
525 

REFERENCES 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

GOL'DENVEIZER A.L., Theory of Elastic Thin Shells, Nauka, Moscow, 1976. 
KOLOS A.V., Methods of refining the classical theory of plate bending and tension. PMM, 

29, 4, 1965. 
GREGORY R.D. and WAN F.Y.M., Decaying states of plane strain in a semi-infinite strip and 
boundary conditions for plate theory, J. Elasticity, 14, 1, 1984. 

RICE J.R. and LEVY N., The part-through surface crack in an elastic plate, Trans. ASME, 
Ser. E., J. Appl. Mech., 39, 1, 1972. 

RICE J.R., The line-spring model for surface flaws. The Surface Crack: Phyiscal Problems 
and.Computational Solutions, ASME, N.Y., 1972. 

DELALE F. and ERDCGAN F., Application of the line-spring model to a cylindrical shell 
containing a circumferential or axial part-through crack, Trans. ASME, Ser. E., J. Appl. 
Mech., 49, 1, 1982. 

YASHI O.S. and ERDOGAN F., A pressurized cylindrical shell with a fixed end which contains 
an axial part-through or through crack, Intern. J. Fracture, 28, 3, 1985. 

PANASYUK V.V., SAVRUK M.P. and DATSYSHIN A.P., The Stress Distribution Around Cracks in 
Plates and Shells. Naukova Dumka, Kiev, 1976. 

Translated by M.D.F. 

PMM U.S.S.R.,Vo1.52,No.4,pp.525-533,1988 oo21-8928/88 $10.00+0.00 
Printed in Great Britain 01989 Pergamon Press plc 

THERMOELASTIC STRESSES IN A HALF-SPACE HEATED 
BY A CONCENTRATED ENERGY FLUX* 

L.N. GERMANOVICH, I.D. KILL and N.S. TSODOKOVA 

An exact solution is obtained fort!he,problem and also a simple approximate 
solution convenient for computations for small times (its errorisestimated) 
that is valid for any absorption coefficients. In the special case of a 
zero absorption coefficient, the solution is simplified and can be written 
in elementary functions (an example is presented). In this case new 
qualitative features of the stress field are found that are not inherent 
in other methods of heating the half-space. For fairly large absorption 
coefficients (a criterion is given), a still more simple and convenient 
closed solution for computations is successfully obtained which can also 
be expressed in terms of elementary functions (an example is presented). 
In the case of both large and small absorption coefficients the stress 
field is analysed and its isolines are constructed. 

In a number of cases, temperature stresses that can be the cause of brittle fracture /l- 
5/ can occur in a solid subjected to a constant energy flux (a laser beam, an electron beam, 
etc.). The temperature stresses inthebody under exposure are studied below on the basis 
of the extensively utilized model of an elastic half-space (/2-l/, say). It is assumed that 
internal distributed heat sources whose density decreases exponentially with depth (Bouger's 
law /5, 8/l act in the half-space. Convective heat transfer from a zero-temperature medium 
occurs on the half-space boundary. This model is quite adequate and allows a determination 
of the thennoelastic stresses at both great depths and at depths of the order of the character- 
istic absorption scale or less. 

The plane thermoelasticity problem for a half-space with heat sources was solved in /9/. 
However, real high-energy beams ordinarily possess axial symmetry. , The temperature and thermo- 
elastic stresses in the half-space in /3/ were found by numerical integration of two improper 
integrals, in the form of which the exact solution is represented, for the case of a uniform 
energy distribution over the transverse section of a cylindrical beam. An attempt to construct 
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the approximate solution for the case of an axisymmetric Gaussian energy distribution in the 
transverse beam section, high absorption coefficients and short heating times was undertaken 
in /7/ where the solution is constructed in the form of a series in a system of hypergeometric 
functions. The solution of the problem for the general case is of interest since the real 
energy distribution may be far from uniform and Gaussian /lo, 11/ while the absorption coef- 
ficient is often not large (for transparent materials). Moreover, it is quite desirable to 
have such a simple approximate solution whose error is controlled. 

1. We consider an elastic half-space z> 0 in the cylindrical coordinates r, cp, = on 
whose boundary heat transfer occurs according to Newton's law with the medium s<o that 
has zero temperature. From the time t = 0 distributedheatsourceswithdensity q = qaf(r)e-w 
act in the half-space, where the function f(r) allows of a Hankel transformation and the 
domain of its values is the segment [0,1]. It is required to find the temperature field and 
the stress field within the half-space whose initial temperature is T = 0. 

Changing to dimensionless quantities 

where a is the thermal diffusivity, k is the thermal conductivity, h is the relative heat 
transfer coefficient, and 6 is an arbitrary linear dimension, and omitting the primes in 
writing the dimensionless quantities, for brevity, we obtain a heat conduction boundary value 
problem 

Applying a Laplace transformation in t and a Hankel transformation in I to (1.2), we 
obtain a boundary value problem which we solve and invert the Hankel transform to find 

T* (r, 2, s) = - F (I, h, s) ?bfH (h) J, (hr)dh (1.3) 

F (2, a, s) = (h + Y) e-O2 ,-YZ 

S(o*-y*)(Ii+o) - S(6J-p) ’ 
w=li’s+v 

m 

T*=L,[T]=ST(r,z,t)e-~‘dt, ffl(h)=frf(r)IO(kr)dr 
0 ” 

where JO is a Bessel function ofthefirst kind. 
We find the stress transforms by the method of thermoelastic dispalcement potential (/X2/, 

p.21). We will first examine certain general problems. Let the heat conduction equation have 
the form aT/& = a&T + Q(M,t), where M is understood to be a point ofthebody being heated 
(a set of coordinates), and dimensional quantities are used for generality. The well-known 
representation of the thermoelastic potential c/13/, p.484) does not permit direct utilization 
of the very convenient Parkus method c/12/, p.43). However, a combination of ideas c/12/, p. 
43 and /13/, p.484) is possible. Following (/13/, p.484) we represent the thermoelastic 
potential in the form 

where the functions Y(M,t), CD,(M) and @r(M) satisfy, respectively, the equations AY = Q. 
A@,, = mT,, A@, = 0, To is the temperature in the half-space at the initial time t = 0,v is 
Poisson's ratio, and a is the coefficient of linear expansion. By comparison with the 
representation in /13/, the component cft,t is added to (1.4). It can be shown in the same 
way as was done earlier c/12/, pp.26 and 27) that this is allowable. Now applying a Laplace 
transform to (1.4) and using well-known reasoning c/12/, p.43), we find the following rep- 
resentation of the thermoelastic potential in the general case 

@* (IM, s) = (m Ia (ST* - T,) + SW* - Y-1 + &,}s-2 (4.5) 

T, = limsT*, I, = limsY* 
S-.9 a-0 

Retuningtothe case under consideration, we can set GO = 0 (since T, = 0). Now since 
Y is independent of the time, we have UT* = Yis, Yy, =Y. Hence and from (1.5) it follows 
that the representation of the Parkus transform of the thermoelastic potential holds in the 
special case of the internal heat source density independent of the time (and zero initial 
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temperature). Using it (i.e., (1.5) for sY* = Y,, DO =O), we obtain 

@* (r,z, s)= 
rn(SP- T,) 

8' 
, T,=limsT* (1.6) 

84 

Again returning to the dimensionless quantities (1.1) and substituting (1.3) into (1.6), 
we find 

(1.7) 

We find the transforms of the stresses corresponding to (1.7) by means of (1.32) from 

/12/. To satisfy the boundary conditions 

err z=rJ = u I - 0 r* z=ll - (1.8) 

the solution obtained in this manner should be combined with the "temperature-free" solution. 
It is determined by using the Love biharmonic function 

L* (P, 2, s) = i [A (s, a) z -Jr B (s, a)] J, (ar) e-h da (1.9) 
0 

from (8.10) in /14/. 
Finally, we have for the transforms of the, desired stresses (G is the shear modulus) 

$&*+i{ iiW$) + [2h-+ (Z -/&z)h - 

F(O,Ls) “_ zhal - e d ““_tE [f(kw-(?y-L-_hyz$ 

kaz) e-X”) + $$f- chr + hF, (z, h)]} ha/H(h) J, (hr) dh - 

m 
!I 

?“F (a s s) 
) +[2h(l--v)+(l-2v_~hi)X-zh']~~~~-~- 8 

0 

(1.10) 

f [ -+ (he-p + [2y (Y - 1) + (yz + 1 - 2~) a - za*] e-h) + 

z~~yAa~-~*+a~,(~,a)]}a~~~(a)~da 

* 
cJ (h+h)F(O,~,s) 9+-T*+2YS{ _ 

s 
,Az_,(x+_ 

&)~-~]ay~~a~~.~aqda + T[ hF(z;b,s) + 12h (1 - v) i- 
0 

(1-2v - laz) a - zaal F ‘O;L 4 e_)J + 5 [ 2 -i2;; AZ + _ 

$[2y(l--v)-(i-2v+yz)a+za~~e-~~-+~e-~~+ 

aF, (z, a)]} a*p(a) 9 da 

~=~{_aE$,L!L+a(~+~z+az~~ ,-I.+ 

0 

~(i-yyr+W _ E[ * e~-+v~+~e-~+ 

aF, (z, a)]} asp (a) I, (ar) da 
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The transforms (1.10) can 
the exact solution constructed 

be confirmed, as had been done 

be inverted by using tables 
in this manner, the uniform 

in the example given below. _ 

from (/15/, p.254 and 257). For 
convergence of the integrals should 

We note that it is sufficient for 
the existence of the Hankel transform f=(L) and its inversion that f(r) is a function of 

bounded variation, absolutely integrable on the half-line [O,+ ca[ (/16/, p.258). This 
requirement is obviously always satisfied in physical problems. 

2. The formulas obtained above for the exact solution are not always convenient for 
practical calculations because of their complexity and the presence of eliminable discon- 

tinuities. 
When investigating processes occurring under intensive heating by concentrated energy 

fluxes, obtaining a simple mode of solution for small values of the heating time is of special 

interest. The complete asymptotic expansion of the solution as t-+0 can be obtained by the 

method developed in /17/. We will confine ourselves here to obtaining a simple asymptotic 

representation of the solution as t-+0, which is the zero-th term of the expansion in the 

method in /17/. 

We note that one of the first papers devoted to constructing an approximate solution for 

small times was /18/. The method employed in /17/ is used below because it enables us to 

obtain anexplicitestimate of the error of the approximate solution being obtained. 

The method of extracting the principal terms of the asymptotic form of the solution will 

be demonstrated in the example of u,,. 

Denoting the operator inverse to L. by Ltml (t is th e argument of the original) and using 

first the theorem on integration of the original and then the Taylor formula, we find 

L;’ I 1 
;o= 1 (2.1) 

t - yzta (h2 - p) exp [- (P - ya) q, 0 < z < t 

Consequently,theoriginal of the last two components in the formula for (J,~ from (1.10) 

has the form 
m 

L;’ ISI he-X= yF1 (L 2) 
s (A + y) (s + P - y*) - s (s + h’ - yy 

] h”fH (a) I,(hr)dh) = 
0 

co 

p = t .a Are-h’ 
rr SI- A-I-Y - v, (a, 2)) aafH (a) i1 ( ad da 

0 

where by using (2.1) and the known inequality ((9.1.60) in /19/) IJr(x)1< I/@ We obtain the 
following estimate for 6,: 

Analogously 

(2.4) 

(2.5) 

setting y = s/(21/7)+ .,,I/t and using the well-known formula (/15/, p.248)) we furthermore 
have 
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from which we find that 

(2.6) 

To estimate the original of the first two components in u,~* from (1.10) it is required 
to estimate the quantity L~-l{F(z,k,s)is}. We will first estimate L*-l{P(a,h,s)). We note that 
T, = -L,-’ {F (7&O, s)} is the solution of the one-dimensional boundary value problem of heat 
conduction obtained from (1.2) for f(r)= 1;A = a*/&*. If h = y = 0, then the solution of 
this problem is T = Z', = t; otherwise T = T, = -Ltl {F(z,O,s)). 

Obviously T,,< T, and consequently by taking account of the estimate obtained from 
(1.3) by using the displacement theorem 

I h-1 {F (% a, 4) I < I b-1 IF b, O,s)l 1 

we find by using the theorem on integration of the original 

(2.7) 

It follows from (2.2)-(2.7) that (I,,(') is an asymptotic representation of urr as t -+ 0, 
where an estimate of the error when a,, is replaced by u,.,o) does not exceed !41+141+ 
I&. I -I- 164 1. Performing analogous calculations for the remaining stresses, we finally obtain 

t e-h2 -+- hF, (X, a)) hSfH (h) v dh + 6,, 
0 

(2.8) 

m 
fJ 

Ir=t SI hz 
D 

- exz - hF, (h, s)} XPfH (h) 3, (kr) dX +- S,, 
h+Y 

Cl 

Relationships (2.8) are exact expressions forthe,stresses. The approximate expressions 
(asymptotically exact as f-t 0) are obtained by discarding 6,, &, 6,,, 6,, in (2.8) and 
replacing the temperature in (2.8) by its asymptotic representations. We have 

,,,,@qq (h+h+2(h+y)er’}LSIfH(~)ldh 

,bp,+{(~;~),,+q+ 

~(a+~)ert}h’ifR(X)/da 

ls,,l~~Qa(2+ +) + +- + 

[a(3+?) + +] e}a2lfH(a)[da 

(2.9) 
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Extracting the principal term of the asymptotic form of the temperature, we obtain 

T = te-V”f (r) + 6T (2.iO) 

AS follows from (2.8)-(2.10), Qii is of the\ order of smallness of &hi, = O(P), i,j = r, 

cp, 2 (t -+ O), while T = 0 (t), 6~ = 0 (t’lx) (t + 0). This means that for small values of t the main 
contribution to the error in the calculation of 6, and (JPP, can be introduced by the error 
in calculating the temperature. To "conserve" the order of the error we extract the first 
term of the asymptotic expansion of T(r,z,t) by using the method in /17/. we have 

T = T, (2, t) f (r) + e’i+ 
t m 

ET=- r~d~SX8J,(hr)f”(h)-hgEdX, O<E<z 
s 
0 l! 

(2.11) 

from which, by using the inequality 8Tl/&> 0, T, < To, we obtain 

(2.12) 

i.e., er = O(P) is an infinitesimal of the order needed. 
The solution (2.11) has an explicit physical meaning. Indeed, it follows from (2.10) and 

(2.12) that sr = 0 (T). This means that for small times heat transfer normal to the surface 
is realized by one-dimensional heat conduction laws to the accuracy of higher order infinite- 
simals. Radial heat flux can be neglected to the same accuracy. An analogous result was 
obtained earlier in the plane case /9/ and in the problem about convective heating of a half- 
space /20/. 

In the case y=O formulas (2.8) take the form 

o,,lD = -T + t (B,, - z&o + f (r, - [(i - 2~) B,, - ZBII + A,,l/r) 

am/D = -T + t (2vB,, + ((1 - 2~) B,I - zB,, + A,,llr) 

o,,/D = t (zB,,, + B,, - f (r)); Q/D = tzB,, 

A,,+Jjch~)f~(h)di, Bi,=Titll(ir).-lyH(*)dh 

For certain kinds of distribution the integrals of (2.14) are taken 
tions. Thus, for a bell-shaped distribution 

f (r) = (r2 + i)_"' 

the computations are quite simple while the error estimate (2.9) reduces 
p.324). 

(2.13) 

(2.14) 

in elementary func- 

(2.15) 

to factorials (/21/, 

Fig.1 shows lines of equal maximal (solid curves) and minimal (dashes) dimensionless 
principal stresses o,/(Dt) and oJ(Dt) for the distribution (2.15). The stresses were computed 
by means of (2.13) for v=O.Z, and the temperature by (2.11). The coefficients (2.14) are 
presented in /17/. As is seen, near the surface P= o tensile stresses occur that exceed 
the compressive stresses in absolute value. This result is thereby qualitatively distinct 
from the convective heat transfer case /17/. 

The stress asymptotic and the error estimate for small t in the case of opaque materials 
(large v) are determined by relationships (2.1) and (2.2). However, much simpler relation- 
ships can be obtained by different means based on the correctness (stability to small tempera- 
ture changes) of the thermoelasticity boundary value problem. We will now study this case 
when slightly transparent materialsareheatedbya concentrated energy flux. 

3. Let the temperature be distributed according tothelaw (2.10) in the half-space z& 0 
(we later neglect the error 6r by setting 6~ = 0). If the quantity y is large, then the 
temperature 



Fig.1 Fig*2 
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analogousinqualitative respects to the caseofconvectiveheattransfer /17/,whichisexplained 
inanaturalmannerbythequalitative similarityofthetemperature fields. This is physically 
evident and follows strictly from the results in /22/. 

The error estimate for the approximate solution (3.3) can be obtained by comparison with 

the approximate solution (2.8) for which there is an explicit error estimate (2.3). When 
evaluating the integrals in (2.8) the eliminable singularities are extracted in an P- 
neighbourhood of y over which the integral is easily estimated, say, by a Taylor series 
expansion of the integrand. 

4. It should also be noted that another approach can also be used in the case of large 

y, according to which heating of the half-space by a concentrated energy flux can be described 

by a homogeneous heat conduction equation (without taking account of the heat sources) but 

with heat conduction boundary conditions of the second kind. In this case assigning the heat 
flux through the half-space surface is substantially equivalent to assigning the heat sources 

strictly on the half-space surface in the approach utilized above. Details of the temperature 

and stress field distribution in a surface layer of thickness of the order of i/y remain 

unknown and we must limit ourselves to large depths at which both approaches yield close 

results. Consequently, if there is a need to consider moderate depths (z<i/v), then it is 

necessary to take account, somehow explicitly, of the interaction between the radiation and 

the substance. The simplest method for taking account of both the physical and mathematical 

viewpoints is to introduce heat sources having a Bouger distribution. 

Deviations from the Bouger distribution that occur near the half-space surface should be 

taken into account in cases when the temperature and stress must be determined in a domain 

where these deviations are substantial, since these are not felt at great depths. But even 

then the Bouger law is often used successfully. Thus, in the case of the heating of a half- 

space by an electron beam the maximum qrn of the internal heat source density lies at a certain 

depth z, from the surface /23/ and the distribution function of the internal heat source 

density is naturally approximated by the expression 

Q (2) = (PO + q1) e-y' - qle-pr (4.1) 
qo= Q(O). 41>0, v<B 

If qa, Qrn.%l> y are known, then 

Qrn 91 = 
- qoe-% 

e-% _ e-% 

while the quantity fl is determined from the equation 

B %I YZ 
- 
Y ( -_e m-i 

4% ) + 1 = * e%l WV) 

which has a unique solution for Y<B+ 
Therefore the approximation (4.1) results in a linear combination of the solutions 

obtained above with the absorption coefficients y and fi in this case. 

The late V.F. Stal'gorov offered considerable assistance in constructing the graphs. 
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ON SOME SPECIAL LAWS OF NON-LINEAR FILTRATION* 

G.A. DOMBROVSKII 

New laws of the non-linear filtration of an incompressible fluid are 
proposed (including laws of filtration with a limiting gradient /l/) which 
enable one, when solving planar, stationary problems, to make use of the 
apparatus of the theory of functions of a complex variable. Some well- 
known special cases are considered. 

1. 
z=z+ig 
angle of 

The planar stationary filtration of an incompressible fluid is considered. Let 
be the plane of flow, u be the modulus of the filtration velocity vector, tl be the 
inclination of the filtration velocity vector to the r-axis, 0 be the stream func- 

tion, 'p = -H+ const, where H is the head, and let @((u) be a function which characterizes the 
filtration law /2/. By adopting v and I3 as the independent variables, we shall have a system 
of equations 

for the functions c~(u,0),tp(u,0) which can be obtained, for example, from the condition of the 
integrability of the right-hand side of the differential relationship 
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